发表

/发表
发表2018-11-22T21:34:25+08:00

专著

流体动力学的格子Boltzmann方法,郭照立,郑楚光,李青,王能超 著,湖北科学技术出版社,2002

格子Botlzmann方法的原理及应用,郭照立,郑楚光 著,科学出版社,2008

期刊论文

  • [1] P. Wang, Y. Zhang, Z. Guo, Numerical study of three-dimensional natural convection in a cubical cavity at high Rayleigh numbers, Int. J. Heat Mass Transf. 113 (2017) 217–228. doi:10.1016/j.ijheatmasstransfer.2017.05.057.
  • [2] J. Hu, Z. Guo*, A numerical study on the migration of a neutrally buoyant particle in a Poiseuille flow with thermal convection, Int. J. Heat Mass Transf. 108 (2017) 2158–2168. doi:10.1016/j.ijheatmasstransfer.2017.01.077.
  • [3] L. Zhu, S. Chen*, Z. Guo*, dugksFoam: An open source OpenFOAM solver for the Boltzmann model equation, Comput. Phys. Commun. 213 (2017) 155–164. doi:10.1016/j.cpc.2016.11.010.
  • [4] L. Zhu, Z. Guo*, Application of discrete unified gas kinetic scheme to thermally induced nonequilibrium flows, Comput. Fluids. (2017). doi:10.1016/j.compfluid.2017.09.019.
  • [5] S. Tao, Z. Guo*, Gas-Solid Drag Coefficient for Ordered Arrays of Monodisperse Microspheres in Slip Flow Regime, Chem. Eng. Technol. 40 (2017) 1758–1766. doi:10.1002/ceat.201600588.
  • [6] L. Zhu, X. Yang, Z. Guo*, Thermally induced rarefied gas flow in a three-dimensional enclosure with square cross-section, Phys. Rev. Fluids. 2 (2017) 1–19. doi:10.1103/PhysRevFluids.2.123402.
  • [7] C. Zhang, Z. Guo, S. Chen*, Unified implicit kinetic scheme for steady multiscale heat transfer based on the phonon Boltzmann transport equation, Phys. Rev. E. 96 (2017) 1–13. doi:10.1103/PhysRevE.96.063311.
  • [8] L. Zhu, Z. Guo*, Numerical study of nonequilibrium gas flow in a microchannel with a ratchet surface, Phys. Rev. E. 95 (2017) 1–12. doi:10.1103/PhysRevE.95.023113.
  • [9] PhysRevE.96.053304.pdf, (n.d.).
  • [10] C. Peng, N. Geneva, Z. Guo, L.P. Wang, Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method, Phys. Rev. E. 95 (2017). doi:10.1103/PhysRevE.95.013301.
  • [11] Y. Bo, P. Wang, Z. Guo, L.P. Wang, DUGKS simulations of three-dimensional Taylor–Green vortex flow and turbulent channel flow, Comput. Fluids. 155 (2017) 9–21. doi:10.1016/j.compfluid.2017.03.007.
  • [12] M.T. Ho, L. Zhu, L. Wu, P. Wang, Z. Guo, Z.-H. Li, Y. Zhang, A multi – level parallel solver for rarefied gas flows in porous media, (n.d.) 1–23.
  • [13] S. Chen*, C. Zhang, L. Zhu, Z. Guo, A unified implicit scheme for kinetic model equations. Part I. Memory reduction technique, Sci. Bull. 62 (2017) 119–129. doi:10.1016/j.scib.2016.12.010.
  • [14] J. Hu, S. Tao, Z. Guo*, An efficient unified iterative scheme for moving boundaries in lattice Boltzmann method, Comput. Fluids. 144 (2017) 34–43. doi:10.1016/j.compfluid.2016.12.007.
  • [15] T. Lei, X. Meng, Z. Guo*, Pore-scale study on reactive mixing of miscible solutions with viscous fingering in porous media, Comput. Fluids. 155 (2017) 146–160. doi:10.1016/j.compfluid.2016.09.015.
  • [16] S. Tao, Z. Guo*, L.P. Wang, Numerical study on the sedimentation of single and multiple slippery particles in a Newtonian fluid, Powder Technol. 315 (2017) 126–138. doi:10.1016/j.powtec.2017.03.039.
  • [17] L. Zhu, P. Wang, Z. Guo*, Performance evaluation of the general characteristics based off-lattice Boltzmann scheme and DUGKS for low speed continuum flows, J. Comput. Phys. 333 (2017) 227–246. doi:10.1016/j.jcp.2016.11.051.
  • [18] S. Tao, H. Zhang, Z. Guo*, Drag correlation for micro spherical particles at finite Reynolds and Knudsen numbers by lattice Boltzmann simulations, J. Aerosol Sci. 103 (2017) 105–116. doi:10.1016/j.jaerosci.2016.10.006.
  • [1] X. Meng, Z. Guo, Boundary scheme for linear heterogeneous surface reactions in the lattice Boltzmann method, Phys. Rev. E. 94 (2016) 1–12. doi:10.1103/PhysRevE.94.053307.
  • [2] P. Wang, L.P. Wang, Z. Guo, Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic scheme methods for direct numerical simulation of decaying turbulent flows, Phys. Rev. E. 94 (2016) 1–23. doi:10.1103/PhysRevE.94.043304.
  • [3] S. Chen, Z. Guo, K. Xu, Simplification of the unified gas kinetic scheme, Phys. Rev. E. 94 (2016) 1–13. doi:10.1103/PhysRevE.94.023313.
  • [4] K. Yang, Z. Guo, Lattice Boltzmann method for binary fluids based on mass-conserving quasi-incompressible phase-field theory, Phys. Rev. E. 93 (2016) 1–13. doi:10.1103/PhysRevE.93.043303.
  • [5] L.-P. Wang, C. Peng, Z. Guo, Z. Yu, Flow Modulation by Finite-Size Neutrally Buoyant Particles in a Turbulent Channel Flow, J. Fluids Eng. 138 (2015) 41306. doi:10.1115/1.4031691.
  • [6] P. Wang, M.T. Ho, L. Wu, Z. Guo, Y. Zhang, A comparative study of discrete velocity methods for low-speed rarefied gas flows, Comput. Fluids. 161 (2018) 33–46. doi:10.1016/j.compfluid.2017.11.006.
  • [7] L.P. Wang, H. Min, C. Peng, N. Geneva, Z. Guo, A lattice-Boltzmann scheme of the Navier-Stokes equation on a three-dimensional cuboid lattice, Comput. Math. with Appl. (2016). doi:10.1016/j.camwa.2016.06.017.
  • [8] C. Peng, Z. Guo, L.P. Wang, A lattice-BGK model for the Navier-Stokes equations based on a rectangular grid, Comput. Math. with Appl. (2016). doi:10.1016/j.camwa.2016.05.007.
  • [9] H. Min, C. Peng, Z. Guo, L.P. Wang, An inverse design analysis of mesoscopic implementation of non-uniform forcing in MRT lattice Boltzmann models, Comput. Math. with Appl. (2016). doi:10.1016/j.camwa.2016.04.040.
  • [10] Y. Zong, C. Peng, Z. Guo, L.P. Wang, Designing correct fluid hydrodynamics on a rectangular grid using MRT lattice Boltzmann approach, Comput. Math. with Appl. 72 (2016) 288–310. doi:10.1016/j.camwa.2015.05.021.
  • [11] C. Peng, Y. Teng, B. Hwang, Z. Guo, L.P. Wang, Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow, Comput. Math. with Appl. 72 (2016) 349–374. doi:10.1016/j.camwa.2015.08.027.
  • [12] S. Tao, J. Hu, Z. Guo, An investigation on momentum exchange methods and refilling algorithms for lattice Boltzmann simulation of particulate flows, Comput. Fluids. 133 (2016) 1–14. doi:10.1016/j.compfluid.2016.04.009.
  • [13] L. Zhu, Z. Guo, K. Xu, Discrete unified gas kinetic scheme on unstructured meshes, Comput. Fluids. 127 (2016) 211–225. doi:10.1016/j.compfluid.2016.01.006.
  • [14] L.P. Wang, C. Peng, Z. Guo, Z. Yu, Lattice Boltzmann simulation of particle-laden turbulent channel flow, Comput. Fluids. 124 (2016) 226–236. doi:10.1016/j.compfluid.2015.07.008.
  • [15] K. Yang, Z. Guo, Lattice Boltzmann study of wettability alteration in the displacement of nanoparticle-filled binary fluids, Comput. Fluids. 124 (2016) 157–169. doi:10.1016/j.compfluid.2015.03.027.
  • [16] C. Peng, H. Min, Z. Guo, L.P. Wang, A hydrodynamically-consistent MRT lattice Boltzmann model on a 2D rectangular grid, J. Comput. Phys. 326 (2016) 893–912. doi:10.1016/j.jcp.2016.09.031.
  • [17] Z. Guo, K. Xu, Discrete unified gas kinetic scheme for multiscale heat transfer based on the phonon Boltzmann transport equation, Int. J. Heat Mass Transf. 102 (2016) 944–958. doi:10.1016/j.ijheatmasstransfer.2016.06.088.
  • [18] Z. Chai, C. Huang, B. Shi, Z. Guo, A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media, Int. J. Heat Mass Transf. 98 (2016) 687–696. doi:10.1016/j.ijheatmasstransfer.2016.03.065.
  • [19] X. Meng, Z. Guo, Localized lattice Boltzmann equation model for simulating miscible viscous displacement in porous media, Int. J. Heat Mass Transf. 100 (2016) 767–778. doi:10.1016/j.ijheatmasstransfer.2016.04.095.
  • [20] L. Wang, J. Mi, Z. Guo, A modified lattice Bhatnagar-Gross-Krook model for convection heat transfer in porous media, Int. J. Heat Mass Transf. 94 (2016) 269–291. doi:10.1016/j.ijheatmasstransfer.2015.11.040.
  • [21] P. Wang, Z. Guo, A semi-implicit gas-kinetic scheme for smooth flows, Comput. Phys. Commun. 205 (2016) 22–31. doi:10.1016/j.cpc.2016.04.005.
  • [22] L. Wang, Z. Xu, Z. Guo, Lattice Boltzmann simulation of separation phenomenon in a binary gaseous flow through a microchannel, J. Appl. Phys. 120 (2016). doi:10.1063/1.4964249.
  • [23] Z. Chai, B. Shi, Z. Guo, A Multiple-Relaxation-Time Lattice Boltzmann Model for General Nonlinear Anisotropic Convection–Diffusion Equations, J. Sci. Comput. 69 (2016) 355–390. doi:10.1007/s10915-016-0198-5.
  • Guo, Z., Wang, R., & Xu, K. (2015). Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case. Physical Review E, 91(3), 033313. https://doi.org/10.1103/PhysRevE.91.033313
  • Huang, C., Shi, B., Guo, Z., & Chai, Z. (2015). Multi-GPU Based Lattice Boltzmann Method for Hemodynamic Simulation in Patient-Specific Cerebral Aneurysm. Communications in Computational Physics, 17(4), 960–974.
  • Liang, H., Chai, Z., Shi, B., Guo, Z., & Li, Q. (2015). Numerical simulations of immiscible displacement in the cavities via lattice Boltzmann method. International Journal of Modern Physics C, 26(07), 1550074.
  • Liu, G., & Guo, Z. (2015). Pore-scale study of the non-linear mixing of fluids with viscous fingering in anisotropic porous media. Communications in Computational Physics, 17(4), 1019–1036.
  • Lou, Q., & Guo, Z. (2015). Interface-capturing lattice Boltzmann equation model for two-phase flows. Physical Review E, 91(1), 013302.
  • Meng, X., & Guo, Z. (2015). Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flow with large viscosity ratio and high Péclet number. Physical Review E, 92(4), 043305.
  • Ren, J., Guo, P., Guo, Z., & Wang, Z. (2015). A Lattice Boltzmann Model for Simulating Gas Flow in Kerogen Pores. Transport in Porous Media, 106(2), 285–301. https://doi.org/10.1007/s11242-014-0401-9
  • Tao, S., & Guo, Z. (2015). Boundary condition for lattice Boltzmann modeling of microscale gas flows with curved walls in the slip regime. Physical Review E, 91(4), 043305.
  • Wang, L., Mi, J., Meng, X., & Guo, Z. (2015). A Localized Mass-Conserving Lattice Boltzmann Approach for Non-Newtonian Fluid Flows. Communications in Computational Physics, 17.
  • Wang, L., Wang, L.-P., Guo, Z., & Mi, J. (2015). Volume-averaged macroscopic equation for fluid flow in moving porous media. International Journal of Heat and Mass Transfer, 82, 357–368.
  • Wang, P., Tao, S., & Guo, Z. L. (2015). A coupled discrete unified gas-kinetic scheme for Boussinesq flows. Computers & Fluids, 120, 70–81. https://doi.org/10.1016/j.compfluid.2015.07.012
  • Wang, Peng, Zhu, L., Guo, Z., & Xu, K. (2015). A comparative study of LBE and DUGKS methods for nearly incompressible flows. Communications in Computational Physics, 120, 70–81. https://doi.org/10.4208/cicp.240614.171014a
  • Yang, K., & Guo, Z. (2015). Multiple-relaxation-time lattice Boltzmann model for binary mixtures of nonideal fluids based on the Enskog kinetic theory. Science Bulletin, 60(6), 634–647.
见Google Scholar主页
或ResearchGate主页

这儿是您的内容